Ranvet

Chemwatch: 4787-98 Version No: 7.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 12/10/2021 Print Date: 07/18/2022 L.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier		
Product name	Ranvet's Virkon-S	
Chemical Name	Not Applicable	
Synonyms	broad spectrum disinfectant	
Chemical formula	Not Applicable	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Broad spectrum disinfectant effective against 17 virus families i
--

Details of the supplier of the safety data sheet

Registered company name	Ranvet
Address	10-12 Green Street Banksmeadow NSW 2019 Australia
Telephone	+61 2 9666 1744
Fax	+61 2 9666 1755
Website	http://www.ranvet.com.au/other_msds.htm
Email	info@ranvet.com.au

Emergency telephone number

Association / Organisation	Ranvet
Emergency telephone numbers	+61 425 061 584
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

ChemWatch Hazard Ratings

	Min	Max	
Flammability	1		
Toxicity	2		0 = Minimum
Body Contact	3	i i	1 = Low
Reactivity	2		2 = Moderate
Chronic	2	i	3 = High 4 = Extreme

Poisons Schedule	S6
Classification ^[1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 1B, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 1, Sensitisation (Respiratory) Category 1, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Label elements

Hazard pictogram(s)

Signal word Danger

Page 2 of 16

Ranvet's Virkon-S

Issue Date: **12/10/2021**Print Date: **07/18/2022**

H302	Harmful if swallowed.
H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H335	May cause respiratory irritation.
H410	Very toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P260	Do not breathe dust/fume.
P264	Wash all exposed external body areas thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P284	[In case of inadequate ventilation] wear respiratory protection.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

r recautionary statement(s) ite	aponae
P301+P330+P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P310	Immediately call a POISON CENTER/doctor/physician/first aider.
P342+P311	If experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider.
P302+P352	IF ON SKIN: Wash with plenty of water.
P363	Wash contaminated clothing before reuse.
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.
P362+P364	Take off contaminated clothing and wash it before reuse.
P391	Collect spillage.
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider if you feel unwell.

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

Not Applicable

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

Mixtures		
CAS No	%[weight]	Name
70693-62-8	<60	potassium peroxymonosulfate sulfate
68411-30-3	<20	(C10-13)alkylbenzenesulfonic acid, sodium salt
6915-15-7	<10	malic acid
7727-21-1	<5	potassium persulfate
Not Available	balance	Ingredients determined not to be hazardous
Legend:	nd: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.

 Chemwatch: 4787-98
 Page 3 of 16
 Issue Date: 12/10/2021

 Version No: 7.1
 Ranvet's Virkon-S
 Print Date: 07/18/2022

	► Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin or hair contact occurs: If skin or hair contact occurs: Market by skine and personner. If skin or hair contact occurs: Market by skine and pair with large amounts of water, using safety shower if available. Quickly remove all contaminated clothing, including footwear. Mash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre. Transport to hospital, or doctor.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

for phosphate salts intoxication:

- All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.
- Ingestion of large quantities of phosphate salts (over 1.0 grams for an adult) may cause an osmotic catharsis resulting in diarrhoea and probable abdominal cramps. Larger doses such as 4-8 grams will almost certainly cause these effects in everyone. In healthy individuals most of the ingested salt will be excreted in the faeces with the diarrhoea and, thus, not cause any systemic toxicity. Doses greater than 10 grams hypothetically may cause systemic toxicity.
- ▶ Treatment should take into consideration both anionic and cation portion of the molecule.
- ▶ All phosphate salts, except calcium salts, have a hypothetical risk of hypocalcaemia, so calcium levels should be monitored.

Treat symptomatically.

For acute or short term repeated exposures to strong acids:

- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION:
- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- ▶ DO NOT attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- ▶ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- ▶ Deep second-degree burns may benefit from topical silver sulfadiazine.

► D

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. **DO NOT** use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

Toxic myocarditis may follow ingestion of oxidizing agents such as peroxides.

BASIC TREATMENT

- ► Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- ▶ Monitor and treat, where necessary, for pulmonary oedema .
- Monitor and treat, where necessary, for shock.
- Anticipate seizures .
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- ▶ DO NOT attempt neutralisation as exothermic reaction may occur.
- ▶ Skin burns should be covered with dry, sterile bandages, following decontamination.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

SECTION 5 Firefighting measures

Chemwatch: 4787-98

Version No: 7.1

Page 4 of 16

Ranvet's Virkon-S

Issue Date: 12/10/2021 Print Date: 07/18/2022

- ▶ There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

- Alert Fire Brigade and tell them location and nature of hazard.
 - Wear breathing apparatus plus protective gloves in the event of a fire.
 - ▶ Prevent, by any means available, spillage from entering drains or water courses
- Use fire fighting procedures suitable for surrounding area. Fire Fighting
 - ▶ DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire
 - Equipment should be thoroughly decontaminated after use.
 - Solid which exhibits difficult combustion or is difficult to ignite.
 - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion.
 - Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited; once initiated larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
 - A dust explosion may release large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people
 - Lusually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this
 - Dry dust can also be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
 - Build-up of electrostatic charge may be prevented by bonding and grounding.
 - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
 - All movable parts coming in contact with this material should have a speed of less than 1-metre/sec.

Decomposition may produce toxic fumes of:

carbon monoxide (CO)

carbon dioxide (CO2) hydrogen chloride

phosgene

phosphorus oxides (POx)

sulfur oxides (SOx)

other pyrolysis products typical of burning organic material

May emit poisonous fumes May emit corrosive fumes.

HAZCHEM

Not Applicable

SECTION 6 Accidental release measures

Fire/Explosion Hazard

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

Major Spills

Environmental hazard - contain spillage.

- Remove all ignition sources
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

Environmental hazard - contain spillage

Moderate hazard.

- ► CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
 - Prevent, by any means available, spillage from entering drains or water courses.
 - Recover product wherever possible.
 - F IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
 - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
 - If contamination of drains or waterways occurs, advise Emergency Services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs.

- Safe handling
- ▶ Use in a well-ventilated area Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked

Chemwatch: **4787-98** Page **5** of **16**Version No: **7.1**

Ranvet's Virkon-S

Issue Date: **12/10/2021**Print Date: **07/18/2022**

- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Other information

 Observe manufacturer's storage and handling recommendations contained within this SDS.

For major quantities:

- Consider storage in bunded areas ensure storage areas are isolated from sources of community water (including stormwater, ground water, lakes and streams).
- Ensure that accidental discharge to air or water is the subject of a contingency disaster management plan; this may require consultation with local authorities.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.
- ► DO NOT use aluminium or galvanised containers

Storage incompatibility

- Avoid strong bases
- Avoid storage with reducing agents.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	potassium persulfate	Potassium persulfate	Not Available	Not Available	0.01 mg/m3	Not Available

Emergency Limits

	• •			
Ingredient	TEEL-1	TEEL-2	TEEL-3	
potassium peroxymonosulfate sulfate	30 mg/m3	330 mg/m3	2,000 mg/m3	
malic acid	4.8 mg/m3	53 mg/m3	320 mg/m3	
potassium persulfate	0.3 mg/m3	26 mg/m3	160 mg/m3	

Ingredient	Original IDLH	Revised IDLH
potassium peroxymonosulfate sulfate	Not Available	Not Available
(C10-13)alkylbenzenesulfonic acid, sodium salt	Not Available	Not Available
malic acid	Not Available	Not Available
potassium persulfate	Not Available	Not Available

Page 6 of 16

Ranvet's Virkon-S

Issue Date: 12/10/2021 Print Date: 07/18/2022

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
potassium peroxymonosulfate sulfate	E	≤ 0.01 mg/m³	
(C10-13)alkylbenzenesulfonic acid, sodium salt	E	≤ 0.01 mg/m³	
malic acid	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Persulfates produce irritation of the respiratory tract.

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eve and face protection

Chemical goggles.

Full face shield may be required for supplementary but never for primary protection of eyes.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

Issue Date: 12/10/2021
Print Date: 07/18/2022

- · frequency and duration of contact.
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- · Excellent when breakthrough time > 480 min
- · Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocaoutchouc.
- polyvinyl chloride.

Gloves should be examined for wear and/ or degradation constantly.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.
- Barrier cream.Skin cleansing cream.
- ► Eve wash unit.

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

 $A(All\ classes) = Organic\ vapours,\ B\ AUS\ or\ B1 = Acid\ gasses,\ B2 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ B3 = Acid\ gas\ or\ hydrogen\ cyanide(HCN),\ E = Sulfur\ dioxide(SO2),\ G = Agricultural\ chemicals,\ K = Ammonia(NH3),\ Hg = Mercury,\ NO = Oxides\ of\ nitrogen,\ MB = Methyl\ bromide,\ AX = Low\ boiling\ point\ organic\ compounds(below\ 65\ degC)$

- $\cdot \ \text{Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.}$
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- · Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU)
- \cdot Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties				
Appearance	Pink coloured powder with pleasant, sweet odour; partially miscible with water.			
Physical state	Divided Solid Relative density (Water = 1) 1.07			
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable	

Issue Date: **12/10/2021**Print Date: **07/18/2022**

pH (as supplied)	Not Applicable	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Applicable	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Negligible
Vapour pressure (kPa)	Negligible	Gas group	Not Available
Solubility in water	65 g/l @ 20 degC	pH as a solution (Not Available%)	2.4-2.7
Vapour density (Air = 1)	Not Applicable	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. Many of the salts of peroxoacids are unstable or explosive and are capable of initiation by heat, friction or impact, and all are powerful oxidants. BRETHERICK L.: Handbook of Reactive Chemical Hazards
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhalation of sulfamic acid may cause bloody spit, difficulty breathing, low blood pressure, headache, dizziness, bluish skin colour and lung congestion.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Inhaled

Acidic corrosives produce respiratory tract irritation with coughing, choking and mucous membrane damage. Symptoms of exposure may include dizziness, headache, nausea and weakness. In more severe exposures, pulmonary oedema may be evident either immediately or after a latent period of 5-72 hours. Symptoms of pulmonary oedema include a tightness in the chest, dyspnoea, frothy sputum and cyanosis. Examination may reveal hypotension, a weak and rapid pulse and moist rates. Death, due to anoxia, may occur several hours after onset of the pulmonary oedema.

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion. Accidental ingestion of the material may be damaging to the health of the individual.

Inorganic polyphosphates are used extensively in domestic and industrial products. Rats fed 10% sodium trimetaphosphate for a month exhibited transient tubular necrosis;

those given 10% sodium metaphosphate exhibited growth retardation; 10% sodium hexametaphosphate produced pale and swollen kidneys. Salts of this type appear to be hydrolysed in the bowel to produce phosphoric acid and systemic acidosis may result following absorption. Higher molecular weight species, absorbed from the alimentary canal, may produce hypocalcaemic tetany due to binding of ionised calcium by the absorbed phosphate. This is reported in at least one case following ingestion of sodium tripolyphosphate.

Ingestion of sulfamic acid may cause vomiting, diarrhoea and a drop in blood pressure. Asphyxia may occur from oedema of the glottis. After initial recovery, onset of fever indicates mediastinitis or peritonitis from perforation of the esophagus or stomach. Ingestion of greater than 10% solutions will cause lesions of the stomach.

Ingestion

Sulfate salts are poorly absorbed from the gastro-intestinal tract but because of osmotic activity are able to draw water from the lumen to produce diarrhoea (purging). Sulfate ion usually has little toxicological potential.

Ingestion of anionic surfactants/ hydrotropes may produce diarrhoea, intestinal distension and occasional vomiting. Lethal doses in animals range from 1 to 5 gm/kg.

Acute potassium poisonings following ingestion are rare because large doses usually induce vomiting and a healthy kidney ensures rapid excretion. Potassium poisoning disturbs the rhythm of the heart (a slow, weak pulse, heightened T waves on the ECG, arrhythmias heart block) and eventually produces a fall in blood pressure (due to weakened cardiac contractility). Respiration is initially accelerated but skeletal muscle weakness may bring to the stage of paralysis. Orally poisoned animals die from respiratory failure, sometimes following convulsion and gastroenteritis, dehydration of organs and early kidney damage (renal tubular necrosis). Survivors may develop loss of appetite (anorexia), excessive thirst (polydipsia), increase volumes of urine (polyuria), fever, convulsive movements and gastric disturbances within the first 24 hours;

Page 9 of 16 Ranvet's Virkon-S

Issue Date: **12/10/2021**Print Date: **07/18/2022**

rapid recovery occurs thereafter.

Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the mucous membranes of the mouth, throat and oesophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Oedema of the epiglottis may produce respiratory distress and possibly, asphyxia. Nausea, vomiting, diarrhoea and a pronounced thirst may occur. More severe exposures may produce a vomitus containing fresh or dark blood and large shreds of mucosa. Shock, with marked hypotension, weak and rapid pulse, shallow respiration and clammy skin may be symptomatic of the exposure. Circulatory collapse may, if left untreated, result in renal failure. Severe cases may show gastric and oesophageal perforation with peritonitis, fever and abdominal rigidity. Stricture of the oesophageal, gastric and pyloric sphincter may occur as within several weeks or may be delayed for years. Death may be rapid and often results from asphyxia, circulatory collapse or aspiration of even minute amounts. Delayed deaths may be due to peritonitis, severe nephritis or pneumonia. Coma and convulsions may be terminal.

The material can produce chemical burns following direct contact with the skin.

Concentrated solutions may cause chemical burns. The effects of sulfamic acid on the skin appear to be limited to the effects of low pH. Concentrations of greater than 20% of sulfamic acid may injure the skin.

Repeated application of a 4% solution of sulfamic acid several times a day for 5 days on the skin produced mild irritation

Skin Contact

Anionic surfactants/ hydrotropes generally produce skin reactions following the removal of natural oils. The skin may appear red and may become sore. Papular dermatitis may also develop. Sensitive individuals may exhibit cracking, scaling and blistering.

Open cuts, abraded or irritated skin should not be exposed to this material

Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Undiluted inorganic phosphates may be severely irritating to the skin but in typical cosmetic formulations (where they act as chelators) they are only mildly irritating.

In clinical testing, irritation is seen as a function of concentration; concentrations as high as 1% produced no irritation in contact allergy patients.

Eve

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating.

When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Direct eye contact with some concentrated anionic surfactants/ hydrotropes produces corneal damage, in some cases severe. Low concentrations may produce immediate discomfort, conjunctival hyperaemia, and oedema of the corneal epithelium. Healing may take several days. Temporary clouding of the cornea may occur.

Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness.

Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive.

Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or respiratory sensitisers. Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyper-responsive.

Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

In chronic animal studies inorganic polyphosphates produced growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis and alterations to the size of muscle fibres.

Chronic

Inorganic phosphates are not genotoxic in bacterial systems nor are they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to sodium hexametaphosphate or sodium trimetaphosphate.

Repeated or prolonged exposure to acids may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatics appear to be at particular risk for pulmonary effects.

Long term exposure to high dust concentrations may cause changes in lung function (i.e. pneumoconiosis) caused by particles less than 0.5 micron penetrating and remaining in the lung. A prime symptom is breathlessness. Lung shadows show on X-ray.

Persulfate allergy is not uncommon and manifests itself in the form of a skin rash, eczema and respiratory conditions such as asthma. Allergy may develop after repeated exposures. Asthmatic complaints ("persulfate asthma") have been described following use of persulfate salts particularly amongst hairdressers. Furthermore the ammonium persulfate contained in bleaching powder is one of the most important contact allergens in the hairdressing profession. It has been suggested that the development of sensitisation is due to an IgE-induced allergic pathomechanism. Wrbitzky R. etal; Int. Arch Occup. Environ. Health (1995) 67; 413-417

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population.

Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking.

Ranvet's Virkon-S

TOXICITY

IRRITATION

Legend:

POTASSIUM

PEROXYMONOSULFATE SULFATE

Page 10 of 16 Ranvet's Virkon-S

Issue Date: 12/10/2021 Print Date: 07/18/2022

	Not Available	Not Available
	TOXICITY	IRRITATION
potassium peroxymonosulfate sulfate	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available
	Inhalation(Rat) LC50; >5 mg/L4h ^[2]	
	Oral (Rat) LD50; 500 mg/kg ^[1]	
	TOXICITY	IRRITATION
(C10-13)alkylbenzenesulfonic acid, sodium salt	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50; 404 mg/kg ^[2]	Skin: adverse effect observed (irritating) ^[1]
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >20000 mg/kg ^[1]	Eye (rabbit): 0.75 mg/24h SEVERE
malic acid		
malic acid	Inhalation(Rat) LC50; >1.306 mg/l4h ^[1]	Eye: adverse effect observed (irritating) ^[1]
malic acid	Inhalation(Rat) LC50; >1.306 mg/l4h ^[1] Oral (Mouse) LD50; 1600 mg/kg ^[2]	Eye: adverse effect observed (irritating) ^[1] Skin (rabbit): 20 mg/24h moderate
malic acid		
malic acid		Skin (rabbit): 20 mg/24h moderate
	Oral (Mouse) LD50; 1600 mg/kg ^[2]	Skin (rabbit): 20 mg/24h moderate Skin: adverse effect observed (irritating) ^[1]
malic acid	Oral (Mouse) LD50; 1600 mg/kg ^[2] TOXICITY	Skin (rabbit): 20 mg/24h moderate Skin: adverse effect observed (irritating) ^[1] IRRITATION

specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

*Science Lab MSDS

for acid mists, aerosols, vapours

Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of urine can range from <5 to > 7 and normally averages 6.2. Furthermore, exposures to low pH in vivo differ from exposures in vitro in that, in vivo, only a portion of the cell surface is subjected to the adverse conditions, so that perturbation of intracellular homeostasis may be maintained more readily than in vitro.

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise

The persulfates were reported to cause both delayed-type and immediate skin reactions, including irritant dermatitis, allergic eczematous dermatitis, localized contact urticaria, generalized urticaria, rhinitis, asthma, and syncope. The most common causes of allergic dermatitis in hairdressers are the active ingredients in hair dyes, and ammonium persulfate has been identified as a frequent allergen. A sensitisation study that also examined the incidence of urticarial reactions was performed with 17.5% ammonium, potassium, and sodium persulfate under occlusive patches. At this concentration and exposure conditions, a mixture of these persulfates was not sensitizing, and application of ammonium, potassium, and sodium persulfate did not result in an urticarial reaction. In normal use (i.e., not occluded and rinsed off), it was expected that a concentration greater than 17.5% would also be safe. Given the clinical reports of urticarial reactions, however, manufacturers and formulators should be aware of the potential for urticarial reactions at concentrations of persulfates greater than 17.5%. Results of animal skin sensitisation tests (Buehler Test and Maximization Test) were negative when persulfate was applied topically and positive when persulfate was injected intradermally in induction and challenge phases in a non-standard Maximization Test. Numerous dermal challenge tests indicate that some persulfates are dermal and respiratory sensitisers in humans occupationally exposed to persulfates in hairdressing salons and, in one case, in a production facility.

In controlled clinical trials with non-occupationally exposed-subjects (NH4 and Na salts), no sensitization reactions were observed. Pulmonary function tests of workers in a persulfate production plant (cation not identified) indicated that there were no short- or long-term effects on pulmonary function at levels in the plant (0.5 mg/m3).

In repeated-dose studies, local effects to the gastro-intestinal tract and the airways were reported. Administration of sodium persulfate to rats in the diet for 13 weeks resulted in a LOAEL of 3000 ppm (225 mg/kg bw/day) based on gastrointestinal lesions and reduced body weights. In a subchronic inhalation study in male and female rats,

adverse effects at a high dose of 25 mg/m3 ammonium persulfate aerosol consisted of inflammation of the trachea, bronchi, bronchioles, increased lung weight, decreased body weights, rales and increased respiratory rate. A NOAEL of 10.3 mg/m3 was established.

Persulfate salts do not appear to cause gene mutations or chromosomal effects in vitro. In vivo tests on sodium persulfate (micronucleus test and UDS test) were negative.

A 51 week dermal study in female mice exposed to 0.2 ml of a 200 mg/ml solution of ammonium persulfate showed that ammonium persulfate is neither a tumour promoter nor a complete carcinogen when applied to the skin.

In a developmental/reproduction study with ammonium persulfate in rats (OECD TG 421), no effects on reproductive performance, fertility, fetal anomalies, fetal viability, spermatogenesis, spermatogenic cycle were reported up to 250 mg/kg-bw/day. Dose levels were chosen based on the acute lethality studies for the ammonium salt and on a 90-day repeat-dose study in rats with the sodium salt (high dose: 225 mg/kg-bw/day). In the developmental/reproduction study, animals were dosed prior to and during mating through gestation until lactation day 4. There was a transient depression in pup body weight at the 250 mg/kg dose level on lactation day 0 which resolved by day 4. This effect was not considered adverse. Based on the available data, the persulfates do not show evidence of reproductive or developmental toxicity. The NOAEL is 250 mg/kg bw/day

Acute or

for alkaryl sulfonate petroleum additives:

Mammalian Toxicology - Acute. Existing data on acute mammalian toxicity indicates a low concern for acute toxicity. Acute oral toxicity: In all but one studies, there were no deaths that could be attributed to treatment with the test material when administered at the limit dose of 2000 or 5000 mg/kg. In some studies, the primary clinical observations were diarrhea and reduced food consumption (without a change in body weight). These effects are consistent with the gastrointestinal irritant properties of detergents in an oil-based vehicle. In other studies, decreased body weight gain or ruffled fur was observed. In one study where deaths occurred, animals were administered dose levels well above the 2000 mg/kg limit dose. Overall, the acute oral LD50 for these substances was greater than the 2000 mg/kg limit dose indicating a relatively low order of toxicity.

Acute dermal toxicity: No mortality was observed for any tested substance when administered at the limit dose of 2000 or 5000 mg/kg. The

(C10-13)ALKYLBENZENESULFONIC ACID, SODIUM SALT

Page 11 of 16 Ranvet's Virkon-S

Issue Date: 12/10/2021 Print Date: 07/18/2022

principal clinical observation was erythema and/or edema at the site of dermal application. In some cases, the cutaneous findings included dry, flaky skin, desquamation and hyperkeratosis. Overall, the acute dermal LD50 for these substances was greater than the 2000 mg/kg limit dose indicating a relatively low order of toxicity.

Acute inhalation toxicity: One member of the petroleum additive alkaryl sulfonate category (CAS RN: 6878396-0) was tested for acute inhalation toxicity (OECD Guideline 403, Acute Inhalation Toxicity). Rats were exposed whole-body to an aerosol of the substance at a nominal atmospheric concentration of 1.9 mg/L for four hours. This was the maximum attainable concentration due to the low volatility and high viscosity of the test material. No mortality was noted, and all animals fully recovered following depuration. Clinical signs of toxicity during exposure included reduced activity, matted coat, and closed eyes. Clinical signs of toxicity observed post exposure included lacrimation, nasal discharge, salivation rates, matted coat, hunched appearance, soft stools and closed eyes. No treatment-related macroscopic findings were noted. The lack of mortality at a concentration just below the limit dose of 2.0 mg/L indicates a relatively low order of toxicity for this substance.

Mammalian Toxicology - Subchronic Toxicity. Existing data from repeated-dose toxicity studies indicates minimal signs of toxicity following repeated oral exposure. Adverse effects at the site of contact were observed following repeated dermal exposure (injury to the skin) and repeated inhalation (injury to the lungs).

NOAELs rage from 49.5 mg/m3 to 1000 mg/kg/day

Mammalian Toxicology - Reproductive and Developmental Toxicity. A one-generation reproductive toxicity test was conducted on one member of the category (CAS # 115733-09-0). Exposure to the alkaryl sulfonate did not significantly impact reproduction or development and these results were bridged to the remainder of the category.

Mammalian Toxicology - Mutagenicity. Existing data from bacterial reverse mutation assays and in vitro and in vivo chromosome aberration studies indicate a low concern for mutagenicity.

Animal Irritation

An acute eye irritation study indicates that calcium dodecylbenzenesulfonate caused irritation.

Result: irritating at 0.1 ml

An acute skin study indicate that calcium dodecylbenzenesulfonate is irritant to skin 0.5 ml according to OECD GHS guidelines. Respiratory irritation was not observed. There were no treatment-related changes in the haematological or urinalysis values in any of the animals. No signs of irritation of respiratory tract and nasal effects were observed.

Linear alkylbenzene sulfonates (LAS) are classified as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes) according to CESIO (CESIO 2000). LAS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/FEC

Linear alkylbenzene sulfonic acids (LABS) are strong acids (pKa<2) are classified as corrosive (R34)

Branched materials exhibit comparable toxicity to linear species.

Acute toxicity: The available data indicate minimal to moderate toxicity, with LD50 values ranging from 500 to 2000 mg/kg body weight (bw). Acute inhalation data also indicate a lack of significant toxicity. Available dermal exposure data also shows a lack of significant toxicity. LAS are readily absorbed by the gastrointestinal tract after oral administration in animals. LAS are not readily absorbed through the skin. The bulk is metabolised in the liver to sulfophenylic carboxyl acids. The metabolites are excreted primarily via the urine and faeces. The main urinary metabolites in rats are sulfophenyl butanoic acid and sulfophenyl pentanoic acid. Accumulation of LAS or its main metabolites has not been established in any organ after repeated oral ingestion.

No serious injuries or fatalities in man have been reported following accidental ingestion of LAS-containing detergent. The main clinical signs observed after oral administration to rats of doses near or greater than the LD50 values consisted of reduced voluntary activity, diarrhoea, weakness etc. Death usually occurred within 24 hours of administration. Rats appear to be more sensitive to LAS than mice. LAS and branched alkylbenzene sulfonates may cause irritation of the eyes, skin and mucous membranes. LAS are relatively more irritating to the skin than the corresponding branched alkylbenzene sulfonates. The potential of LAS to irritate the skin depends on the concentration applied. LAS have been classified as irritating to skin at concentrations above 20% according to EU-criteria. Human skin can tolerate contact with solution of up to 1% LAS for 24 hours resulting in only mild irritation. Application of > 5% LAS to the eyes of rabbits produced irritation. Concentration of < 0.1% LAS produced mild to no irritation.

Skin sensitization was not seen in 2,294 volunteers exposed to LAS or in 17,887 exposed to formulations of LAS.

Repeat dose toxicity: A feeding study indicated that LAS, when administered for 2 years at extremely high levels (0.5%) in the diets to rats, produced no adverse effects on growth, health or feed efficiency.

Genotoxicity: The mutagenic potential of LAS was tested using *Salmonella typhimurium* strains, using Ames test. In these studies, LAS was not mutagenic. The available long-term studies are inadequate for evaluating the carcinogenic potential of LAS in laboratory animals. The studies available (oral administration to rats and mice) do not show any evidence of carcinogenicity.

Reproductive toxicity: In general no specific effect of LAS on reproductive processes has been seen, although dosages causing maternal toxicity may also induce some effects on reproduction. No teratogenic effects attributed to LAS exposure have been observed.

Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency)

For aromatic sulfonic acids

Aromatic sulfonic acids are very corrosive as was demonstrated in skin and eye irritation studies, in the acute oral studies, and in the single repeated dose oral study.

Health records from industrial manufacturing exposure, including manufacturing plant book of injuries and a physician report, show toluene-4-sulphonic acid (as handled in manufacturing plants; i.e., a 65% aqueous solution with < 5% free sulphuric acid) is an irritant to the eye and skin.

Sensitisation:

There is a single, key study for sensitization of the aromatic sulphonic acids. None of the tested animals showed positive responses in a, well documented, GLP guinea pig sensitization study with toluene-4-sulphonic acid (CAS No. 104-15-4). The test substance can be considered a non-sensitizer in guinea pigs as none of the test animals showed a positive response to combined intradermal and topical induction followed by topical challenge.

Repeat dose toxicity:

A GLP guideline study with p-toluenesulphonic acid (CAS No. 104-15-4) reported no adverse effects to male and female rats exposed orally for 28 days. The highest dose was 500 mg/kg bw/day (>490 mg/kg bw/day based on >98% active ingredient). Therefore the NOAEL was set at 500 mg/kg bw/day.

Toxicity to reproduction:

No fertility studies are reported for the aromatic sulphonic acids. There are however studies for the chemically related hydrotrope substances that looked at reproductive organs and development of offspring. Hydrotropes are the salt form of the sulphonic acids and therefore are used as read-across for this endpoint. The 90-day oral rat and oral mouse studies and the 2-year chronic dermal rat and mouse studies with the closely related compound sodium xylene sulfonate (CAS No. 1300-72-7) included examination of sex organs of both sexes. No treatment related effects on reproductive organs were reported at doses roughly equivalent to those in the developmental toxicity study. he NOAEL for both maternal and foetal toxicity was the highest dose tested - 3000 mg/kg bw /day which is equivalent to 936 mg active ingredient per kilogram body weight per day. The conclusion of the study was no indications of developmental toxicity including teratogenesis.

Genetic toxicity:

There is a fully documented, GLP Guideline (OECD 471) Ames Test and a fully documented, GLP Guideline (OECD 473) Chromosome Aberration Test for one of the aromatic sulphonic acids, p-toluenesulphonic acid (CAS No. 104-15-4). Both tests were conducted with and without metabolic activation. The Ames test exposed up to 5000 micrograms/plate and the chromosome aberration test exposed up to 1902 micrograms per liter of the test substance. These studies conclude the substance is neither mutagenic norcytotoxic.

There is an additional, published report of an Ames Test for another of the aromatic sulphonic acids, benzenesulfonic acid (CAS No. 98-11-3). Exposures up to 10,000 micrograms/plate were done with and without metabolic activation. The conclusion is the same as for the p-toluenesulphonic acid; that is, not mutagenic and not cytotoxic.

There are no in vivo mutagenicity studies for the aromatic sulphonic acids, but there are two in vivo mouse micronucleus studies for the

Page 12 of 16 Ranvet's Virkon-S

Issue Date: 12/10/2021 Print Date: 07/18/2022

related hydrotropes - sodium cumene sulfonate (CAS 28348-53-0) and calcium xylene sulfonate (CAS 28088-63-3). Both are GLP-compliant Guideline mouse micronucleus studies with full documentation. Both studies conclude the test substances were not mutagenic in these assays.

Disulfonic acids have not been the subject of concern.

Carcinogenicity:

There are no carcinogenicity studies for the aromatic sulphonic acids Two hydrotrope studies involve 2-year rat and mouse dermal exposures conducted under GLP. Up to 240 mg (rats) and 727 mg (mice) sodium xylenesulfonate/kg body weight in 50% ethanol were dosed 5 days per week for 104 weeks. There were no treatment related incidences of mononuclear cell leukenia, neoplasms, or nonneoplatic lesions of the skin and other organs. The increased incidence of epidermal hyperplasia may have been related to exposure to the test substance. The NOAEL was reported as 240 mg/kg bw/day for rats and 727 mg/kg bw/day for mice.

Elimination:

The US EPA has evaluated the metabolism of analogs in in the sodium alkyl naphthalenesulfonate cluster (SANS), a group of sodium salts of naphthalenesulfonic acids. In a US EPA final rule for SANS, it was stated that "the 1- or 2-sulfonic acid sodium salt moieties on the naphthalene ring may provide a handle by which these compounds can be readily conjugated and eliminated."

for simple alpha-hydroxy carboxylic acids and their salts:

The US Food and Drug Administration (FDA) received a total of 114 adverse dermatologic experience reports for alpha-hydroxy acids (AHA)-containing skin care products between 1992 and February 2004, with the maximum number in 1994. The reported adverse experiences included burning (45), dermatitis or rash (35), swelling (29), pigmentary changes (15), blisters or welts (14), skin peeling (13), itching (12), irritation or tenderness (8), chemical burns (6), and increased sunburn (3). The frequency of such reports for skin exfoliating products that contain AHAs has been considerably lower in subsequent years. The more serious adverse reactions appear to occur most often with products that cause the greatest degree of exfoliation, such as "skin peelers."

Various studies confirmed previous industry studies indicating that applying AHAs to the skin results in increased UV sensitivity. After four weeks of AHA application, volunteers' sensitivity to skin reddening produced by UV increased by 18 percent. Similarly, the volunteers sensitivity to UV-induced cellular damage doubled, on average, with considerable differences among individuals. Topical glycolic acid enhances photodamage by ultraviolet light.

However, the studies also indicated that this increase in sensitivity is reversible and does not last long after discontinuing use of the AHA cream. One week after the treatments were halted, researchers found no significant differences in UV sensitivity among the various skin sites

Most AHAs are physiologic, natural, and non-toxic substances. All members of the group promote normal keratinization and desquamation. Those with multiple hydroxyl groups are moisturizing antioxidants, and are especially gentle for sensitive skin.

The studies did not identify exactly how AHAs bring about the increased UV sensitivity, although the effects did not appear to involve dramatic increases in UV-induced damage to DNA in the skin.

Previous FDA studies have indicated that a cosmetic-type cream base caused an AHA to penetrate more deeply into the skin when compared to an AHA solution without the usual cosmetic ingredients. However, further studies will be needed to learn how much, if at all, those cosmetic-type ingredients influence the AHA-related effects on UV sensitivity.

The toxicology of simple alpha hydroxy carboxylic acids cluster is characterised by five compounds sharing the functional group defining the cluster name

MALIC ACID

Experimental data available for members of the simple alpha-hydroxy carboxylic acids indicate a low acute, repeated-dose, reproductive and developmental toxicity

The simple alpha hydroxy carboxylic acids are eye and skin irritants but are not expected to be skin sensitisers.

Genotoxicity test data for two cluster members and a cancer bioassay for the calcium salt of propanoic acid, 2-hydroxy- yielded negative results and all other cluster members are considered to have little or no mutagenic or carcinogenic potential.

Acute oral toxicity of propanoic acid, 2-hydroxy- (2S)- (79-33-4) and propanoic acid, 2-hydroxy- (50-21-5) are low. The repeated-dose and developmental toxicity of the three tested simple alpha -hydroxy carboxylic acids is low. In EPA's High Production Volume Program reproductive toxicity testing for propanoic acid, 2-hydroxy- (50-21-5) was deemed unnecessary because it is a normal component of human intermediary metabolism. Reproductive toxicity of acetic acid, 2-hydroxy- (79-14-1) has been tested and was found to be low. Low reproductive toxicity of the associated potassium salts is also expected to be low. Alpha-hydroxy carboxylic acids are severe eye irritants. Acetic acid, 2-hydroxy- (79-14-1), propanoic acid, 2-hydroxy- (2S)- (79-33-4) and propanoic acid, 2-hydroxy- (50-21-5) all produced positive skin irritation in rabbits. The members of this cluster are not expected to be skin sensitisers based on negative results in guinea pigs for both acetic acid, 2-hydroxy- (79-14-1) and propanoic acid, 2-hydroxy- (2S)- (79-33-4). Genotoxicity data for acetic acid, 2-hydroxy- (79-14-1) and propanoic acid, 2-hydroxy- (50-21-5) are negative, indicating that none of the cluster members are expected to be genotoxic. A 2-year drinking water study of the calcium salt of propanoic acid, 2-hydroxy- (50-21-5) in rats showed no evidence of carcinogenicity. An expert judgment based on mechanism-based structure-activity relationship considerations indicate little or no carcinogenic potential for any of the cluster members due to expected rapid metabolism/excretion and lack of genotoxic structural alert. This judgment is supported by the negative cancer and mutagenicity data for propanoic acid, 2-

hydroxy- (50-21-5), which is considered a reasonable analogue to the rest of the cluster.

Some products containing alpha-hydroxy acids (AHAs) have been marketed for uses such as treating acne, removing scars, and lightening discolorations. Among these are some products marketed as "skin peelers," which may contain relatively high concentrations of AHAs or other acids and are designed to remove the outer layer of the skin

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis

Inhalation (rat) TCLo: 3.8 mg/m3/23H/7D-I

The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the

POTASSIUM PERSULFATE

Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IqE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure

POTASSIUM PEROXYMONOSULFATE SULFATE

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of

Continued...

(C10-13)ALKYLBENZENESULFONIC

Issue Date: **12/10/2021**Print Date: **07/18/2022**

ACID, SODIUM SALT & MALIC ACID & POTASSIUM PERSULFATE

RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Acute Toxicity	✓	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	×
Mutagenicity	X	Aspiration Hazard	X

Legend:

★ - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
Ranvet's Virkon-S	Not Available	Not Available	Not Available	Not Available	Not Available
potassium peroxymonosulfate	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	24h	Crustacea	1.8mg/l	1
sulfate	EC50	48h	Crustacea	3.5mg/l	2
	LC50	96h	Fish	42.3mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	ErC50	72h	Algae or other aquatic plants	20mg/l	1
(C10-13)alkylbenzenesulfonic acid, sodium salt	EC50	72h	Algae or other aquatic plants	20mg/l	1
	NOEC(ECx)	72h	Algae or other aquatic plants	0.1mg/l	1
	EC50	48h	Crustacea	6.5mg/l	1
	EC50	96h	Algae or other aquatic plants	0.91mg/l	2
	LC50	96h	Fish	0.26mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50	72h	Algae or other aquatic plants	>100mg/l	2
malic acid	NOEC(ECx)	72h	Algae or other aquatic plants	100mg/l	2
	LC50	96h	Fish	100-1600mg/l	Not Available
potassium persulfate	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	72h	Algae or other aquatic plants	2.38-3.42mg/L	4
	EC50	72h	Algae or other aquatic plants	2.38-3.42mg/L	4
	EC50	48h	Crustacea	21.22mg/l	2
	LC50	96h	Fish	76.3mg/l	2

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air	
malic acid	LOW	LOW	

Bioaccumulative potential

Ingredient	Bioaccumulation	
(C10-13)alkylbenzenesulfonic acid, sodium salt	LOW (BCF = 245)	
malic acid	LOW (LogKOW = -1.26)	

Version No: **7.1**

Ranvet's Virkon-S

Mobility in soil

Ingredient	Mobility
malic acid	HIGH (KOC = 1)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant

HAZCHEM

Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
potassium peroxymonosulfate sulfate	Not Available
(C10-13)alkylbenzenesulfonic acid, sodium salt	Not Available
malic acid	Not Available
potassium persulfate	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type		
potassium peroxymonosulfate sulfate	Not Available		
(C10-13)alkylbenzenesulfonic acid, sodium salt	Not Available		
malic acid	Not Available		
potassium persulfate	Not Available		

SECTION 15 Regulatory information

Issue Date: 12/10/2021

Print Date: 07/18/2022

Page 15 of 16

Ranvet's Virkon-S

Issue Date: 12/10/2021 Print Date: 07/18/2022

potassium peroxymonosulfate sulfate is found on the following regulatory lists

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Schedule 5

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Schedule 6

(C10-13)alkylbenzenesulfonic acid, sodium salt is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

Australian Inventory of Industrial Chemicals (AIIC)

Australian Inventory of Industrial Chemicals (AIIC)

malic acid is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

potassium persulfate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Schedule 6

National Inventory Status

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (potassium peroxymonosulfate sulfate; malic acid; potassium persulfate)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	No (potassium peroxymonosulfate sulfate)	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	No (potassium peroxymonosulfate sulfate; (C10-13)alkylbenzenesulfonic acid, sodium salt)	
Vietnam - NCI	Yes	
Russia - FBEPH	No (potassium peroxymonosulfate sulfate)	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	12/10/2021
Initial Date	11/12/2012

SDS Version Summary

Version	Date of Update	Sections Updated
6.1	09/03/2020	Classification change due to full database hazard calculation/update.
7.1	12/10/2021	Classification change due to full database hazard calculation/update.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

Chemwatch: 4787-98 Page 16 of 16 Issue Date: 12/10/2021 Version No: 7.1 Print Date: 07/18/2022

Ranvet's Virkon-S

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.